Mathematical Biostatistics Boot Camp 1

Brian Caffo, Johns Hopkins University

This class presents the fundamental probability and statistical concepts used in elementary data analysis. It will be taught at an introductory level for students with junior or senior college-level mathematical training including a working knowledge of calculus. A small amount of linear algebra and programming are useful for the class, but not required.

Statistics is a thriving discipline that provides the fundamental language of all empirical research. Biostatistics is simply the field of statistics applied in the biomedical sciences.

This course puts forward key mathematical and statistical topics to help students understand biostatistics at a deeper level. After completing this course, students will have a basic level of understanding of the goals, assumptions, benefits and negatives of probability modeling in the medical sciences. This understanding will be invaluable when approaching new statistical topics and will provide students with a framework and foundation for future self learning.

Topics include probability, random variables, distributions, expectations, variances, independence, conditional probabilities, likelihood and some basic inferences based on confidence intervals.

Developed in collaboration with Johns Hopkins Open Education Lab.

Syllabus

The goal of this course is to equip biostatistics and quantitative scientists with core applied statistical concepts and methods:
  1. Students will learn basic mathematical biostatistics including probability distributions and their properties.
  2. Students will learn the basics of statistical likelihood.
  3. Students will learn the basics of confidence intervals.
  4. The course will introduce students to the display and communication of statistical data. This will include graphical and exploratory data analysis using tools like scatterplots, boxplots and the display of multivariate data. 

Recommended Background

Knowledge of calculus, set theory and a moderate level of mathematical literacy are prerequisites for this class. A small amount of programming is useful, but not required.

Suggested Readings

Methods in Biostatistics I on JHSPH OpenCourseWare

Course Format

This course consists of lectures and homework assignments.

FAQ

Is calculus really necessary for this class?
Yes.

What resources will I need for this class?
Please download and install the R statistical programming language.

Сессии:
  • 13 июля 2015, 7 недель
  • 23 марта 2015, 7 недель
  • 24 ноября 2014, 7 недель
  • 16 июня 2014, 7 недель
  • 3 марта 2014, 7 недель
  • 18 ноября 2013, 7 недель
  • 29 июля 2013, 7 недель
  • 16 апреля 2013, 7 недель
  • 24 сентября 2012, 7 недель
Характеристики онлайн курса:
  • Бесплатный:
  • Платный:
  • Сертификат:
  • MOOC:
  • Видеолекции:
  • Аудиолекции:
  • Email-курс:
  • Язык: Английский Gb

Отзывы

Пока никто не написал отзыв по этому курсу. Хотите быть первым?

Зарегистрируйтесь, чтобы оставить отзыв

Show?id=n3eliycplgk&bids=695438
Входит в подборки курсов:
Darwin_logo2 Bioinformatics
Bioinformatics and mathematical methods in biology
NVIDIA
Ещё курсы на эту тему:
Bootcamp2_b-02 Mathematical Biostatistics Boot Camp 2
Learn fundamental concepts in data analysis and statistical inference, focusing...
18-466s03 Mathematical Statistics
This graduate level mathematics course covers decision theory, estimation, confidence...
85252_dacb_13 What Are the Chances? Probability Made Clear - Udemy
Learn all of the unique aspects of probability and how it is applicable in...
20-181f06 Computation for Biological Engineers
This course covers the analytical, graphical, and numerical methods supporting...
18-338jf04 Infinite Random Matrix Theory
In this course on the mathematics of infinite random matrices, students will...
Ещё из рубрики «Математика и статистика»:
6e8a49e3-e74b-4a74-81b7-ebaf9c82c620-e20771d7a2a2.small Derivatives Markets: Advanced Modeling and Strategies
Financial derivatives are ubiquitous in global capital markets. Students will...
Ddjlogo Doing Journalism with Data: First Steps, Skills and Tools
This free 5-module online introductory course gives you the essential concepts...
Ampcamp4-logo Big Data Mini Course: AMP Camp 4 hands-on exercises
The exercises we cover today will have you working directly with the Spark specific...
Google_logo_41 Digital Analytics Fundamentals
This three-week course provides a foundation for marketers and analysts seeking...
Logo Information Theory, Pattern Recognition, and Neural Networks
A series of sixteen lectures covering the core of the book "Information Theory...
Ещё от Coursera:
Success-from-the-start-2 First Year Teaching (Secondary Grades) - Success from the Start
Success with your students starts on Day 1. Learn from NTC's 25 years developing...
New-york-city-78181 Understanding 9/11: Why Did al Qai’da Attack America?
This course will explore the forces that led to the 9/11 attacks and the policies...
Small-icon.hover Aboriginal Worldviews and Education
This course will explore indigenous ways of knowing and how this knowledge can...
Ac-logo Analytic Combinatorics
Analytic Combinatorics teaches a calculus that enables precise quantitative...
Talk_bubble_fin2 Accountable Talk®: Conversation that Works
Designed for teachers and learners in every setting - in school and out, in...

© 2013-2019